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N E U R O D E G E N E R AT I O N

Proteomic analysis reveals distinct cerebrospinal fluid 
signatures across genetic frontotemporal 
dementia subtypes
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We used an untargeted mass spectrometric approach, tandem mass tag proteomics, for the identification of pro-
teomic signatures in genetic frontotemporal dementia (FTD). A total of 238 cerebrospinal fluid (CSF) samples from 
the Genetic FTD Initiative were analyzed, including samples from 107 presymptomatic (44 C9orf72, 38 GRN, and 
25 MAPT) and 55 symptomatic (27 C9orf72, 17 GRN, and 11 MAPT) mutation carriers as well as 76 mutation-
negative controls (“noncarriers”). We found shared and distinct proteomic alterations in each genetic form of FTD. 
Among the proteins significantly altered in symptomatic mutation carriers compared with noncarriers, we found 
that a set of proteins including neuronal pentraxin 2 and fatty acid binding protein 3 changed across all three 
genetic forms of FTD and patients with Alzheimer’s disease from previously published datasets. We observed 
differential changes in lysosomal proteins among symptomatic mutation carriers with marked abundance 
decreases in MAPT carriers but not other carriers. Further, we identified mutation-associated proteomic changes 
already evident in presymptomatic mutation carriers. Weighted gene coexpression network analysis combined 
with gene ontology annotation revealed clusters of proteins enriched in neurodegeneration and glial responses 
as well as synapse- or lysosome-related proteins indicating that these are the central biological processes affected 
in genetic FTD. These clusters correlated with measures of disease severity and were associated with cognitive 
decline. This study revealed distinct proteomic changes in the CSF of patients with genetic FTD, providing insights 
into the pathological processes involved in the disease. In addition, we identified proteins that warrant further 
exploration as diagnostic and prognostic biomarker candidates.

INTRODUCTION
Frontotemporal dementia (FTD) is an umbrella term referring to a 
group of progressive neurodegenerative disorders, which typically 
present with behavioral changes {behavioral variant, language prob-
lems (primary progressive aphasia), or motor impairment [either 
FTD with amyotrophic lateral sclerosis (ALS) or FTD with parkin-
sonism]} (1). Although less common than Alzheimer’s disease (AD), 
dementia with Lewy bodies, and vascular dementia, FTD is a leading 
cause of early onset dementia (2). The underlying molecular basis of 
FTD is complex, but most cases can be attributed to a frontotemporal 
lobar degeneration (FTLD) pathology, with cellular inclusions of tau, 
TAR DNA binding protein 43 (TDP-43), or FET proteins [FUS (fused 
in sarcoma), EWS (Ewing sarcoma), and TAF15 (TATA-binding as-
sociated factor 15)] (3). Unlike AD, around a third of FTD cases have 
a genetic cause, with the most common mutations occurring in three 
genes: GRN (progranulin) and C9orf72 (chromosome 9 open reading 
frame 72), both of which are typically accompanied by an underlying 
TDP-43 proteinopathy, and MAPT (microtubule-associated protein 
tau), manifesting as tauopathy (1, 4).

In FTD, the complex relationship between clinical presentations 
and underlying molecular pathology poses a challenge for its diagnosis 

and treatment. AD can be viewed as a successful example of how the 
introduction of cerebrospinal fluid (CSF) biomarker–assisted diag-
nosis has led to recent therapeutic advances (5) with the potential to 
revolutionize its treatment. In the case of FTD, however, the historic 
lack of biomarkers, as well as the complex relationship between clinical 
symptomatology and underlying pathophysiology, have so far ham-
pered such advancements. Nonetheless, there are biomarkers that 
show promise also in the context of FTD. Neurofilament light chain 
(NfL) has emerged as a promising, although disease-nonspecific, 
biomarker in differentiating FTD from primary psychiatric causes of 
behavioral symptoms (6) and, because plasma NfL increases in con-
centration in the presymptomatic phase of genetic FTD, also as a 
biomarker to detect neurodegeneration onset and disease intensity 
(7). Although there are indications that group-level concentrations of 
NfL are highest (at least in plasma) in GRN carriers (8), NfL cannot be 
used to identify the underlying pathology. For this purpose, mutation-
 or pathology-specific biomarkers are needed, with current examples 
being limited, such as low plasma/CSF progranulin as an indication of 
an underlying GRN mutation resulting in haploinsufficiency (9, 10), or 
promising new results on TDP-43 or 3R/4R tau protein in plasma-
derived extracellular vesicles (11) need further replication. Because of 
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the lack of an antemortem gold standard for FTLD-tau and TDP-43 
pathologies, sporadic FTD is likely not an ideal model to develop pre-
viously unidentified biomarkers at present. In familial FTD, however, 
the relationship between genetic mutation and resulting pathology 
may provide a context that allows the identification of such markers.

Previous studies using antibody-based methods (12–14) or mass 
spectrometric techniques (15, 16) have identified several FTD biomark-
er candidates, including NfL, neurofilament medium (NfM) and heavy 
(NfH), neuronal pentraxins, chitinase-3–like protein 1 (CHI3L1, also 
known as YKL-40), and ubiquitin carboxy-terminal hydrolase L1 
(UCHL1). However, none of these proteins have proven specific for ei-
ther FTLD or its subtypes, with similar alterations being seen in other 
neurodegenerative disorders, such as AD, Creutzfeldt-Jakob disease, or 
ALS (14, 17–21).

In this study, we adopted an untargeted proteomics approach, 
using high-resolution mass spectrometry (MS) combined with 
tandem mass tag (TMT), to measure CSF proteins in a large, well-
characterized genetic FTD cohort: the Genetic FTD Initiative 
(GENFI) study. We aimed to measure changes in low-abundance 
proteins not previously implicated in FTD to identify proteomic 
signatures of symptomatic groups carrying the most common ge-
netic mutations causing FTD and therefore potentially distin-
guish specific underlying pathologies. Furthermore, we explored 
CSF proteomic changes that may identify mutation carriers at the 
presymptomatic stage of the disease, as has been done previously 
in autosomal dominant AD (22). Lastly, we investigated altera-
tions of biological pathways in FTD, as mirrored in the CSF pro-
teome, and their association with relevant clinical parameters and 
cognitive decline.

RESULTS
We analyzed a total of 238 CSF samples from 71 C9orf72 expansion 
carriers, 55 GRN mutation carriers, and 36 MAPT mutation carriers, 
including both presymptomatic and symptomatic carriers in each 
group, as well as 76 asymptomatic noncarriers (Table 1). Key meth-
odological information of this study is summarized in Fig. 1, and spe-
cific descriptions for each analysis are detailed in the Materials and 
Methods and Supplementary Methods sections. Having prepared 
and analyzed all study samples using protocols previously described 
and developed by our laboratory (23–25), we initially explored dif-
ferential protein abundances among symptomatic groups to assess 
widespread CSF proteomic changes in the context of different under-
lying pathologies and compared those with AD. Next, we used linear 
models to discern mutation-associated proteins already changed at 
the presymptomatic disease stage. Furthermore, using weighted gene 
coexpression network analysis (WGCNA), we aimed to elucidate 
pathophysiological features associated with genetic mutations, as well 
as the cross-sectional correlations of protein networks with measures 
of cognitive function and brain volume. Last, to investigate the prog-
nostic properties of protein networks, we assessed their association 
with cognitive decline.

After outlier exclusion and removal of proteins with high miss-
ingness, we identified and obtained quantitative information for 
1981 CSF proteins. First, we compared our TMT dataset with exist-
ing biomarker data from the same sample cohort. TMT CSF neuro-
filament light chain (NEFL; henceforth used interchangeably with 
the protein abbreviation, NfL) measurements strongly correlated 
with plasma NfL measurements acquired on the single-molecule ar-
ray (Simoa, Quanterix) platform [correlation coefficient (r) = 0.62, 

1UK Dementia Research Institute at University College London, WC1N 3BG London, UK. 2Dementia Research Centre, UCL Queen Square Institute of Neurology, University 
College London, WC1N 3BG London, UK. 3Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of 
Gothenburg, 431 39 Mölndal, Sweden. 4Centre for Cognitive and Clinical Neuroscience, Division of Psychology, Department of Life Sciences, College of Health, Medicine, 
and Life Sciences, Brunel University, UB8 3PH London, UK. 5Department of Neurology, Erasmus Medical Centre, 3015 GD Rotterdam, Netherlands. 6Alzheimer’s Disease and 
Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic, Institut d’Investigacións Biomèdiques August Pi I Sunyer, University of Barcelona, 08036 Barcelona, 
Spain. 7Clinique Interdisciplinaire de Mémoire, Département des Sciences Neurologiques, CHU de Québec, and Faculté de Médecine, Université Laval, Québec, QC G1V 
0A6, Canada. 8Center for Alzheimer Research, Division of Neurogeriatrics, Department of Neurobiology, Care Sciences, and Society, Bioclinicum, Karolinska Institutet, 171 
64 Solna, Sweden. 9Unit for Hereditary Dementias, Theme Aging, Karolinska University Hospital, 171 77 Solna, Sweden. 10Fondazione Ca’ Granda, IRCCS Ospedale Poli-
clinico, 20122 Milan, Italy. 11University of Milan, Centro Dino Ferrari, 20122 Milan, Italy. 12Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, 
3000 Leuven, Belgium. 13Neurology Service, University Hospitals Leuven, 3000 Leuven, Belgium. 14Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium. 15Faculty of 
Medicine, University of Lisbon, 1649-028 Lisbon, Portugal. 16Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milano, Italy. 17University Hospital of Coimbra 
(HUC), Neurology Service, Faculty of Medicine, University of Coimbra, 3004-531 Coimbra, Portugal. 18Center for Neuroscience and Cell Biology, Faculty of Medicine, Uni-
versity of Coimbra, 3004-531 Coimbra, Portugal. 19Division of Neuroscience and Experimental Psychology, Wolfson Molecular Imaging Centre, University of Manchester, 
M20 3LJ Manchester, UK. 20Departments of Geriatric Medicine and Nuclear Medicine, University of Duisburg-Essen, 45141 Essen, Germany. 21Department of Neurology, 
Ludwig-Maximilians Universität München, 80539 Munich, Germany. 22German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany. 23Munich Cluster 
of Systems Neurology (SyNergy), 81377 Munich, Germany. 24Department of Neurofarba, University of Florence, 50139 Florence, Italy. 25IRCCS Fondazione Don Carlo Gnocchi, 
50143 Florence, Italy. 26Department of Neurology, University of Ulm, 89081 Ulm, Germany. 27Department of Neurology, Martin-Luther-University Hospital of Halle-
Wittenberg, 06120 Halle (Saale), Germany. 28University of Lille, 59000 Lille, France. 29Inserm 1172, Lille, 59000 Lille, France. 30CHU, CNR-MAJ, Labex Distalz, LiCEND Lille, 
59000 Lille, France. 31Department of Psychiatry, McGill University Health Centre, McGill University, Montreal, Québec H4A 3J1, Canada. 32McConnell Brain Imaging Centre, 
Montreal Neurological Institute, McGill University, Montreal, Québec H3A 0G4, Canada. 33Nuffield Department of Clinical Neurosciences, Medical Sciences Division, Uni-
versity of Oxford, OX3 9DU Oxford, UK. 34Department of Brain Sciences, Imperial College London, W12 0NN London, UK. 35Sorbonne Université, Paris Brain Institute – 
Institut du Cerveau – ICM, Inserm U1127, CNRS UMR 7225, AP-HP - Hôpital Pitié-Salpêtrière, 75013 Paris, France. 36Centre de référence des démences rares ou précoces, 
IM2A, Département de Neurologie, AP-HP - Hôpital Pitié-Salpêtrière, 75013 Paris, France. 37Département de Neurologie, AP-HP - Hôpital Pitié-Salpêtrière, 75013 Paris, 
France. 38Department of Clinical Neurological Sciences, University of Western Ontario, London, Ontario N6A 5A5 , Canada. 39Tanz Centre for Research in Neurodegenera-
tive Diseases, University of Toronto, Toronto, Ontario M5S 1A8, Canada. 40Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, University of Toronto, 
Toronto, Ontario M4N 3M5, Canada. 41Department of Clinical Neurosciences, University of Cambridge, CB2 3EB Cambridge, UK. 42Division Translational Genomics of 
Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, 72076 Tübingen, Germany. 43Center for Neuro-
degenerative Diseases (DZNE), 72076 Tübingen, Germany. 44Cognitive Disorders Unit, Department of Neurology, Donostia Universitary Hospital, 20014 San Sebastian, 
Spain. 45Neuroscience Area, Biodonostia Health Research Institute, 20014 San Sebastian, Gipuzkoa, Spain. 46Department of Clinical and Experimental Sciences, University 
of Brescia, 25123 Brescia, Italy. 47Department of Continuity of Care and Frialy, ASST Spedali Civili Brescia, 25123 Brescia, Italy. 48Clinical Neurochemistry Laboratory, Sahlg-
renska University Hospital, SE-43180 Mölndal, Sweden. 49Institut du Cerveau et de la Moelle épinière (ICM), Pitié-Salpêtrière Hospital, Sorbonne Université, 75013 Paris, 
France. 50University of Science and Technology of China and First Affiliated Hospital of USTC, Hefei, Anhui, P.R. China. 51Department of Neurodegenerative Disease, UCL 
Institute of Neurology, Queen Square, WC1N 3BG London, UK. 52Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China. 53Wisconsin 
Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792, USA.
*Corresponding author. Email: a.​sogorb-esteve@​ucl.​ac.​uk
†These authors contributed equally to the work.
‡GENFI investigators are listed at the end of the paper.

D
ow

nloaded from
 https://w

w
w

.science.org on February 07, 2025

mailto:a.​sogorb-esteve@​ucl.​ac.​uk


Sogorb-Esteve et al., Sci. Transl. Med. 17, eadm9654 (2025)     5 February 2025

S c i e n c e  T r a n s l at i o n a l  M e d i c i n e  |  Rese    a r c h  A r t i c l e

3 of 16

P < 0.001; fig. S1A]. The relative protein abundances of 14-3-3 epsi-
lon (YWHAE) (r = 0.39, P < 0.001; fig. S1B), neuronal pentraxin 2 
(NPTX2) (r = 0.8, P < 0.001; fig. S1C), and neuronal pentraxin re-
ceptor (NPTXR) (r = 0.68, P < 0.001; fig. S1D) also correlated sig-
nificantly with previous data from the same cohort, acquired using 
targeted mass spectrometric analysis (26). The strong correlations 
of TMT relative protein abundances with measures acquired on 

two independent platforms indicate good analytical precision of 
our results.

CSF proteomes differ across symptomatic FTD mutation 
carrier groups
Linear regression analysis, including age and sex as covariates, was 
used to perform group comparisons between noncarriers and 

Table 1. Baseline demographic characteristics of the GENFI cohort. 

Characteristic Overall,  
N = 238*

Noncarrier, 
N = 76*

Presymp-
tomatic 
C9orf72,  
N = 44*

Presympto-
matic GRN, 
N = 38*

Presympto-
matic MAPT, 

N = 25*

Symp-
tomatic 
C9orf72,  
N = 27*

Sympto-
matic GRN, 
N = 17*

Sympto-
matic MAPT, 

N = 11*

P value†

Age, years 48 (38, 58) 43 (38, 53) 43 (33, 50) 50 (37, 56) 42 (33, 46) 58 (55, 70) 64 (58, 67) 63 (59, 66) <0.001

 Sex, male 108 (45%) 33 (43%) 19 (43%) 18 (47%) 9 (36%) 16 (59%) 8 (47%) 5 (45%) 0.8

 Education, 
years

15 (12, 16) 15 (12, 17) 14 (12, 16) 15 (13, 16) 15 (13, 16) 13 (11, 14) 14 (9, 15) 13 (12, 16) 0.019

 Plasma NfL, 
pg/ml

8 (6, 15) 7 (5, 10) 8 (6, 10) 8 (5, 10) 6 (5, 9) 40 (21, 55) 44 (37, 69) 20 (18, 23) <0.001

 MMSE 30.0 (28.0, 
30.0)

30.0 (29.0, 
30.0)

30.0 (29.0, 
30.0)

30.0 (29.0, 
30.0)

30.0 (29.0, 
30.0)

26.0 (20.3, 
28.8)

23.0 (20.5, 
28.0)

24.5 (17.8, 
27.0)

<0.001

 FTLD-CDR-
SOB

0.0 (0.0, 1.0) 0.0 (0.0, 0.0) 0.0 (0.0, 0.5) 0.0 (0.0, 0.0) 0.0 (0.0, 0.5) 11.5 (4.8, 
15.5)

10.0 (4.8, 
13.0)

7.5 (3.3, 10.6) <0.001

*Median (IQR); n (%).    †Kruskal-Wallis rank sum test; Fisher’s exact test.
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Fig. 1. Key information about participants, proteomics workflow, and data analysis. This figure shows the TMT MS/MS proteomics workflow, in which samples were 
preprocessed and labeled with 18 different isobaric TMTpro tags (TMTpro 18-plex) and combined into multiplex samples to allow for relative quantification and simultane-
ous analysis of the 18 individual samples. This process was then repeated until all 238 samples were labeled with isobaric tags. Next, each multiplex sample was fraction-
ated using offline high-pH high-performance liquid chromatography (HPLC) to reduce sample complexity, and each fraction was subsequently analyzed by LC-MS/
MS. The data analysis conceptually consisted of four steps: 1) investigating differences in protein abundances in mutation carriers compared with noncarriers and 2) de-
termining FTD-subtype–specific proteomic signatures using linear models, 3) protein network analysis to investigate mutation- and pathology-specific pathophysiologi-
cal features, and, finally, 4) correlating these protein clusters with clinical parameters and cognitive decline to discern clinically relevant changes. 
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symptomatic mutation carriers. In the case of symptomatic MAPT 
mutation carriers, 58 proteins significantly differed in abundance 
compared with noncarriers (Fig. 2A and table S1A), whereas the 
abundance of 138 and 385 proteins was significantly altered in symp-
tomatic GRN (Fig. 2B and table S1B) and C9orf72 mutation carriers 
(Fig. 2C and table S1C) compared with noncarriers, respectively 
(Padjust < 0.05).

Next, to strengthen our findings, we compared our results with 
those from an external cohort consisting of symptomatic GRN car-
riers (n = 11) and healthy noncarriers (n = 12) (27) whose CSF pro-
teomes were measured with label-free MS. Most proteins were 
commonly quantified in both studies, of which 73 proteins were 
significantly changed in both datasets (Punadjusted < 0.05) (fig. S2 and 
table S2), with log2 fold changes being strongly correlated between 
the studies (r = 0.87, P < 0.001) (fig. S2).

From the 25 hits that presented the lowest P values in each symp-
tomatic mutation group (table S3), a list of proteins was compiled 
(excluding overlap between groups) denoting corresponding pro-
tein abundance fold changes compared with noncarriers in a heat-
map (Fig. 2D and table S3). As expected, the three neurofilaments, 
NfL, NfM, and NfH, alongside YKL-40 (CHI3L1), exhibited the 
greatest fold change in abundance across most symptomatic groups 
when compared with noncarriers, with NfL abundances being up to 
7.4 times higher in symptomatic GRN carriers in comparison with 
noncarriers. Other proteins showing a notable positive fold change 
in symptomatic mutation carriers included the spectrins (SPTBN1 
and SPTAN1) as well as UCHL1, FABP3 (fatty acid–binding protein 
3), PEA15 (proliferation and apoptosis adaptor protein 15), and sev-
eral 14-3-3 proteins (YWHAZ, YWHAG, YWHAE). Proteins that 
were lower in abundance across symptomatic mutation carriers 
compared with noncarriers included the synaptic proteins NPTXR, 
NPTX2, and NPTX1, as well as proprotein convertase subtilisin/
kexin type 2 (PCSK2) and proenkephalin (PENK). Furthermore, 
GRN relative abundance levels were lower in GRN mutation carri-
ers. Most proteins showed the same directionality of abundance 
fold change across the three mutation carrier groups except for 
a few proteins. These included GRN, which showed an opposite 
direction of change in symptomatic C9orf72 and GRN carriers 
(both Padjust < 0.05), and the lysosomal proteins deoxyribonuclease 2 
(DNASE2) and phospholipase B domain containing 2 (PLBD2), 
which were selectively decreased in symptomatic MAPT carriers.

Proteomic similarities and differences between genetic FTD 
and sporadic AD
Because some of the proteins quantified in this study are expected to 
change also in other neurodegenerative disorders, we compared the 
summary statistics of our differential abundance analyses of symp-
tomatic FTD mutation carrier groups with summary statistics of 
previously published TMT proteomics datasets from two distinct 
AD studies: the European Medical Information Framework (EMIF) 
CSF study (25) and a CSF proteomics study performed by Higgin-
botham and colleagues (28). Of the about 1192 proteins quantifiable 
in all three studies (Fig. 3A and tables S4, A and B, and S5), only 6 
were significantly changed in all groups (Padjust < 0.05) (YWHAZ, 
YWHAG, UCHL1, NPTXR, NPTX2, and FABP3; Fig. 3, B and C, 
and table S5). Conversely, many proteins were distinctly changed in 
each FTD mutation carrier group (Fig. 3, B and C, and table S5), 
with more widespread changes being found in symptomatic C9orf72 
carriers [calretinin (CALB2), sortilin 1 (SORT1), and roundabout 

guidance receptor 1 (ROBO1)] compared with GRN [transmem-
brane protein 132A (TMEM132A), ring finger protein (RNF13), 
and chitinase 3–like 2 (CHI3L2)] and MAPT carriers [hexosamini-
dase subunit alpha (HEXA), semaphorin 6A (SEMA6A), and ca-
thepsin D (CTSD)]. Proteins shared between C9orf72 and GRN 
carriers included many proteins involved in lysosomal processes 
[GRN, cathepsin S (CTSS), and lysosomal-associated membrane 
protein 1 (LAMP1)]. Proteins uniquely changed in both AD studies 
included neurogranin (NRGN) and SPARC-related modular calci-
um binding 1 (SMOC1), both previously shown to increase in re-
sponse to amyloid pathology (29). Only two proteins were distinctly 
changed in all symptomatic FTD mutation carrier groups [CD44 
and follistatin like 4 (FSTL4)], likely reflecting the different process-
es involved in these disease-causing mutations.

Mutation-associated proteomic changes are evident in 
presymptomatic disease mutation carriers
Having compared proteomic alterations of symptomatic FTD sub-
types and their overlap with AD, we next set out to determine changes 
in protein abundances associated with a specific genetic background, 
regardless of affectation (presence or absence of symptoms). The pres-
ence of symptoms is expected to coincide with diverse neurodegen-
erative processes affecting the CSF proteome and obscuring potential 
mutation-related changes. Thus, to investigate proteomic alterations 
attributable to each underlying pathogenic mutation, we (i) fitted lin-
ear models combining all study participants, testing the effect of ge-
netic mutation on protein abundances while adjusting for affectation 
(Fig. 4 and table S6) and (ii) compared CSF proteomes of presymp-
tomatic individuals with noncarriers for each genetic group separate-
ly (figs. S3 to S8 and table S7, A to C). This approach yielded several 
proteins strongly associated with the C9orf72 (Fig. 4A), GRN (Fig. 
4B), or MAPT (Fig. 4C) mutation status, of which the top five proteins 
for each association were chosen for visual display. Standardized β co-
efficients indicate the strength of the association and are depicted in a 
forest plot for ease of comparison. The protein most strongly associ-
ated with the C9orf72 mutation status was CALB2 (Fig. 4A; standard-
ized β = 0.77, Padjust < 0.01), which could also be found among the top 
changed proteins in the analysis of presymptomatic C9orf72 carriers 
versus noncarriers (figs. S5 and S8). Numerous proteins found to be 
associated with C9orf72, such as glucose-6-phosphate isomerase, 
hexokinase 1 (HK1) (Fig. 4A and fig. S8), and phosphoglycerate ki-
nase 1 (PGK1) (fig. S8) are key enzymes of the glycolysis pathway, 
hinting at early metabolic disturbances. The proteins CALB2, HK1, 
and PGK1 demonstrated a stepwise increase in abundance from 
noncarriers over presymptomatic to symptomatic C9orf72 carriers 
(fig. S8), further underlining their implication in C9orf72-related 
disease processes.

Reflecting the GRN haploinsufficiency, the protein most strongly 
associated with GRN mutation status was GRN itself (Fig. 4B and 
figs. S4 and S7; standardized β = −1.59, Padjust < 0.01), followed by 
alpha-N-acetylgalactosaminidase (NAGA) (standardized β = 0.71, 
Padjust =  0.04) and RNF13 (standardized β =  0.64, Padjust =  0.09). 
RNF13, although narrowly failing to reach the significance thresh-
old of 0.05 after multiple testing corrections in the combined analy-
sis, was found to be significantly changed in the presymptomatic 
GRN carrier versus noncarrier analysis (fig. S4; Padjust = 0.03) and 
increased in abundance across the GRN disease continuum (fig. S7). 
The proteins most strongly associated with MAPT mutation status 
were PEA15 (Fig. 4C; standardized β  =  0.9, Padjust  <  0.01) and 
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Fig. 2. Volcano plots and heatmap displaying top protein hits in symptomatic mutation carriers versus noncarriers. (A to C) Volcano plots showing proteomic dif-
ferences in symptomatic MAPT (A), GRN (B), and C9orf72 (C) mutation carriers on the basis of linear regression analysis with age and sex as covariates. Differences were 
considered significant if Benjamini-Hochberg [false discovery rate (FDR)]–adjusted P values were < 0.05. (D) The heatmap displays the 25 proteins in each group that 
had the lowest FDR-adjusted P values in linear regression analysis, resulting in 62 proteins when accounting for overlapping proteins among groups. The log2 fold abun-
dance change between noncarriers and the respective mutation carrier group is color coded; proteins higher or lower in abundance in symptomatic mutation carriers 
versus noncarriers are shown in red and blue, respectively. Note that not all proteins listed in (D) were significantly altered in all groups. *Padjust < 0.05, **Padjust < 0.01, and 
***Padjust < 0.001. Details on exact P values and log2 fold change can be found in tables S1A to S1C.
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SEMA6A (standardized β = -0.82, Padjust < 0.05). PEA15 was also 
significantly altered in the comparison between presymptomatic 
MAPT carriers and noncarriers (fig. S3, Padjust = 0.02) and increased 
in abundance from the presymptomatic to symptomatic disease 
stage (fig. S6). Because of concerns of family membership adversely 
affecting our results, we conducted sensitivity analyses adopting the 
same linear models as in the main analysis but including one mem-
ber from each family. These analyses presented similar results (table 
S8, A to E).

Protein networks reveal pathology-specific 
pathophysiological alterations and correlate with 
clinical parameters
Having studied the proteomic signatures of each genetic group, we 
further explored the biological processes implicated in these pro-
teomic changes by performing WGCNA (figs. S9 to S23). WGCNA is 
an analysis tool aimed at reducing the complexity of a proteomics 
dataset by breaking it down into gene ontology (GO)–annotated pro-
tein clusters. These protein modules consist of highly co-correlated 
proteins likely reflecting similar biological processes. We identified a 

total of 14 protein modules, including a group of 645 proteins that 
could not be assigned to any of the modules and a module containing 
contaminants from the laboratory environment. The modules varied 
in size from 14 to 349 proteins with a median module size of 52 pro-
teins (table S9). We determined the biological relevance of each pro-
tein module using GO analysis of its constituent proteins and selected 
the most representative term for module annotation (figs. S12 to 
S23). Furthermore, we identified the hub proteins of each module, 
indicating the proteins most strongly correlating (R > 0.7) with the 
module’s first principal component (eigenprotein value), as most rep-
resentative and important proteins of the respective module.

Figure 5A shows a selection of six protein modules and their cor-
responding eigenprotein values (representative abundance values) 
plotted across all genetic groups as well as noncarriers. One module, 
which we termed “core markers” of neurodegenerative disease, con-
sisted of 15 proteins and was most strongly increased in abundance 
in each genetic group at the symptomatic stages when compared 
with noncarriers. The strong difference between noncarriers and 
presymptomatic MAPT carriers was largely influenced by age. It 
included YWHAG, NEFL, CHI3L1, NEFM, and YWHAZ as hub 
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Fig. 3. Cross-cohort comparisons of symptomatic genetic FTD with AD. (A) Venn diagram with proteins measured in GENFI, the EMIF cohort (25), and Higginbotham 
et al. (28). The overlap (n = 1192) represents proteins quantified in all studies. (B) UpSet plot of differentially expressed proteins (FDR-adjusted P < 0.05) for symptomatic 
C9orf72, MAPT, and GRN mutation carriers and for patients with AD from the Higginbotham and EMIF cohorts. The upper, vertical bars show the number of differentially 
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proteins. These proteins were also among the top hits in the differen-
tial abundance analysis and had the highest fold change in symp-
tomatic mutation carriers compared with noncarriers (Fig. 2D). As 
expected, many proteins belonging to the core markers module were 
also seen among the proteins overlapping between the three genetic 
forms and were found to be altered in the CSF of patients with AD in 
the EMIF and Higginbotham studies (Fig. 3, B and C).

Correlating the core marker eigenprotein values with clinical 
parameters in both presymptomatic and symptomatic mutation 
carriers (Fig. 5B) revealed a strong positive association of the 
module with both plasma NfL (r = 0.86, Padjust < 0.0001) and the 
National Alzheimer’s Coordinating Center (NACC) FTLD plus 

clinical dementia rating (CDR) sum of boxes (SOB) (FTLD-CDR-
SOB) disease severity scores (r = 0.67, Padjust < 0.0001) as well as a 
negative association with mini mental state examination (MMSE) 
scores (r = −0.53, Padjust < 0.0001) and regional brain volumes. The 
core markers module also positively correlated with estimated years 
until disease onset (EYO) in presymptomatic individuals (r = 0.68, 
Padjust < 0.0001).

Besides the core markers module, eigenprotein values for both 
the “actin binding” module and the “stress response” module were 
higher across symptomatic mutation carrier groups (albeit not sta-
tistically significant), suggesting common pathophysiological alter-
ations in these processes (Fig. 5A). Both modules, along with the 
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Fig. 5. Weighted gene coexpression network modules show mutation/pathology-specific changes and correlate with relevant clinical parameters. (A) WGCNA 
identified 14 distinct highly correlated modules of proteins. Modules were named in accordance with GO terms mapped to their constituent proteins. Six modules of 
particular interest were selected, and their eigenprotein values were plotted across the entire cohort: core markers, actin binding, stress response, synapse, lysosome, and 
immune response. Framed boxes contain the names of the top five hub proteins of each module, as determined by having the highest module membership value (kME). 
P values for respective group comparisons versus noncarriers are derived from linear regression analyses with Tukey’s post hoc test to adjust for multiplicity. Box plots of 
the remaining modules can be found in fig. S24. *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001. (B) Heatmap of correlation parameters of module eigenproteins 
with different clinical measures. Spearman’s rho values are color coded, and the corresponding Bonferroni-corrected P values are included in parentheses for each tile. To 
evaluate the association of protein modules with clinical parameters at different time points of the disease continuum, correlations were performed in an indicated subset 
of individuals only. GAG, glycosaminoglycan.
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“glycosaminoglycan processing” module (fig. S24D), showed a simi-
lar correlation pattern to the core markers module.

Conversely, the “synapse” module, containing proteins such as 
CHGB, SHISA6, CADM3, CADM1, and GPR158, showed lower ei-
genprotein values in all symptomatic mutation carrier groups com-
pared with noncarriers, although changes were not significant. Its 
correlation pattern with clinical parameters was inverse compared 
with the core markers module, exhibiting negative correlations with 
age, plasma NfL, and FTLD-CDR-SOB scores, and positive correla-
tions with MMSE scores and brain volumes (Fig. 5B), similarly to 
the “neuronal development” and the “extracellular matrix 1” mod-
ules (fig. S24, B and E). The neuronal development module con-
tained several proteins considered to be markers of synaptic loss 
(NPTX2 and NPTXR, among others) and was significantly lower in 
symptomatic C9orf72 carriers (Padjust < 0.05).

We also identified a module associated with lysosomal proteins 
(“lysosome” module), for which eigenprotein values were selective-
ly decreased in symptomatic MAPT mutation carriers compared 
with noncarriers (Padjust < 0.05). They were also slightly decreased 
in presymptomatic MAPT individuals, albeit without statistical sig-
nificance (P = 0.79). The hub proteins were determined to be sialic 
acid acetylesterase (SIAE), HEXB, HEXA, DNASE2, and PLBD2, all 
of which are implicated in lysosomal processes. These specific 
changes in MAPT mutation carriers in DNASE2 and PLBD2 were 
already evident in the heatmap (Fig. 2D) contrasting symptomatic 
mutation carrier groups. Other lysosomal proteins found to be 
commonly changed in GRN and C9orf72 carriers (LAMP1 and 
CTSS; Fig. 3) were not part of the lysosome module, suggesting dif-
ferent subpopulations of lysosomal proteins, which might be reflec-
tive of distinct biological processes. The lysosome module did not 
correlate with markers of neurodegeneration, cognitive decline, or 
brain atrophy.

The “immune response” module contained proteins related to the 
complement pathway and the immune system. For all symptomatic 
groups, there was a visible trend of increase in these clusters when 
compared with noncarriers; however, these differences were not sta-
tistically significant (P > 0.05). This module showed similar correla-
tion patterns with clinical features to the core markers module.

Protein networks associate with cognitive decline in 
mutation carriers
To evaluate the prognostic properties of protein networks, the mod-
ule eigenprotein values of mutation carriers with cognitive evalua-
tion at the time of lumbar puncture (LP) (n = 146, mean number of 
annual visits = 2.7, range 1 to 5) were modeled with the FTLD-CDR-
SOB score as outcome. In agreement with analyses of cross-sectional 
cognitive scores, higher core markers eigenprotein values were most 
strongly associated with higher FTLD-CDR-SOB scores, reflecting 
poorer cognitive outcomes (standardized β = 0.83, P < 0.001; Fig. 
6A). A similar but less prominent pattern was seen for the actin 
binding module (standardized β = 0.50, P < 0.001; Fig. 6B). Con-
versely, lower eigenvalues of the synapse module were associated 
with increasing FTLD-CDR-SOB scores (standardized β  =  −0.49, 
P < 0.001; Fig. 6C). This indicated that lower synapse eigenprotein 
values were associated with worse cognitive outcomes. Further, the 
“semaphorin signaling,” neuronal development, extracellular matrix 
1, lysosome, and immune response module eigenprotein values were 
also significantly (all P < 0.05) associated with cognitive decline (Fig. 
6D; for full model output, see table S10).

DISCUSSION
The present study offers a detailed and untargeted account of the 
CSF proteomic signatures in genetic FTD. By including participants 
from the well-characterized GENFI cohort, with presymptomatic 
and symptomatic carriers of pathogenic mutations in the three 
genes comprising the overwhelming majority of genetic FTD, we 
covered most of the clinical continuum as well as its underlying ge-
netic causes. Our analytical approach allowed us to uncover pro-
teomic changes beyond known CSF and blood biomarkers, such as 
NfL, glial fibrillary acidic protein, and progranulin, suggesting po-
tential pathology- and FTD-specific biomarkers.

To assess both differences and similarities across the FTD spec-
trum, we explored the proteome of each genetic group through 
separate analyses. Using differential protein abundance analysis, we 
found several proteins that were altered in all symptomatic mutation 
carriers. Among these proteins, many of the top hits were neuronal 
proteins known to be increased in CSF in several neurodegenerative 
diseases, including neurofilaments (NfL, NfM, and NfH) and 14-3-3 
proteins (YWHAZ and YWHAG) (17,  18,  30). NfL (both when 
measured in CSF and plasma) has especially been suggested to be of 
diagnostic, prognostic, and theragnostic value in FTD because both 
this and other studies have found large fold changes (seemingly 
most pronounced in GRN carriers) compared with healthy controls 
and even other brain-related conditions, which bears important im-
plications for differential diagnoses (7, 30, 31). The decreased rela-
tive abundances of neuronal pentraxins (NPTX1 and NPTX2) and 
their receptor (NPTXR), previously reported to be decreased in ge-
netic FTD (15, 26, 32) and other neurodegenerative diseases (18, 33), 
further emphasize the presence of synaptic changes in FTD. These 
markers displayed a similar fold change in the study of FTD-GRN by 
Pesämaa et al. (27), which we used to validate our findings. In addi-
tion, changes shared between groups included proteins recently sug-
gested to be associated with astrocytic and microglial responses in 
AD as well as FTD-TDP brains, such as rab GDP dissociation in-
hibitor alpha (GDI1), FABP3, and CD44 (34). Although not signifi-
cantly changed in either the EMIF or Higginbotham study, CD44 
antigen has been shown to play a role in neuroinflammation in AD, 
in relation to disease-associated microglia (34, 35) and their com-
munication with astrocytes (36), as well as in GRN-deficient animal 
models (37). Despite not being specific to glial responses in FTD, 
the increases seen in symptomatic FTD suggest that CD44 may be a 
promising fluid-based marker to index such glial changes in future 
trials. GDI1, FABP3, and CD44 were also identified as microglia 
activation–dependent markers in the study by Pesämaa et al. (27).

Many of the proteins found to be altered in all groups of symp-
tomatic carriers were assigned to the core markers module in the 
protein network analysis (YWHAG, NfL, UCHL-1, FABP3, CHI3L1, 
and CD44). Several of these core marker proteins (FABP3, UCHL1, 
and YWHAG, among others) were also shown to be changed in 
abundance in the CSF of patients with AD, as evidenced by the 
EMIF and Higginbotham studies (25, 28). Together, these findings 
support the strong neurodegenerative and glial component of both 
diseases and highlight that, despite AD and FTD being separate dis-
ease entities, they appear to share common downstream pathophys-
iological features. The core markers also reflected disease severity 
and imaging measures of neurodegeneration and proved to be the 
protein network most closely linked to cognitive decline and EYO, 
highlighting the prognostic value of markers reflecting neurodegen-
erative and neuroinflammatory processes.
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Besides the core markers module, we identified several other pro-
tein modules seemingly altered across groups in the FTD spectrum 
compared with noncarriers, with constituent proteins relating to the 
synapse (synapse module), in line with results shown in the heatmap 
(Fig. 2), actin binding, and stress response. Lower relative abundances 
of the synapse eigenprotein values also predicted cognitive decline in 
mutation carriers. Although these protein networks strongly corre-
lated with clinical and neuroimaging features, abundance differences 
compared with noncarriers were rendered nonsignificant, likely 

because of their association with age. The synaptic protein neuro-
granin (NRGN) as well as the extracellular matrix protein SMOC1 
were not altered in any of the groups of symptomatic genetic FTD 
mutation carriers but altered in both AD studies. This is in line with 
previous research (29) and suggests their specificity for amyloid-
related changes in AD. Conversely, the protein FSTL4 was found to 
be changed in all groups of symptomatic FTD mutation carriers but 
not AD, hinting at its potential specificity for FTD. Knowledge is 
still limited on the extent to which this protein is associated with 
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neurodegenerative disorders, although one small study reported 
lower protein abundances of FSTL4 in patients with ALS (38).

Because this study aimed to look beyond proteomic alterations 
shared between FTD subtypes as well as AD, we also investigated the 
differences across genetic forms of FTD and their expected underlying 
pathologies. We identified lysosomal proteins with the potential to 
separate processes implicated in MAPT mutation carriers but not 
the other two groups. Decreased DNSAE2 and PLBD2 (which show 
divergent patterns in symptomatic GRN and C9orf72 carriers as 
shown in Fig. 2B) appeared to be specifically related to the presence 
of tau pathology, without the amyloid background observed in AD 
(as evident in Fig. 3). This was further supported by PLBD2 and 
DNASE2 being among the hub proteins in the lysosome module, 
driving the marked eigenprotein value decrease in MAPT mutation 
carriers (Fig. 5G). Evidence suggests that PLBD2 and DNASE2 play 
a role in lysosomal processes (39–42). These results were unexpect-
ed, given the evidence of lysosomal dysfunction in GRN mutation 
carriers, but not in MAPT mutation carriers, because of the role of 
progranulin in the endolysosomal pathway (43,  44). Nonetheless, 
tau protein has been previously implicated in the trafficking of au-
tophagic vesicles and autolysosome fusion (45–47), suggesting that 
a reduction in proteins related to the endolysosomal pathway in 
MAPT may indicate a potential dysregulation in this system. Lyso-
somal acid phosphatase 2 (ACP2) (48), a member of the lysosome 
module, was found to be decreased in presymptomatic MAPT carri-
ers, which aligns with the changes seen in the protein networks in 
symptomatic carriers. This dysregulation might be different from 
that observed in C9orf72 and GRN carriers, in which there was a 
selective increase in some lysosomal proteins (LAMP1 and CTSS) 
not belonging to the lysosome module and thus displaying a differ-
ent correlation pattern.

In analyses stratifying groups by mutation irrespective of symp-
tomatology, we observed a stepwise abundance increase across the 
disease continuum in PEA15, an astroglial protein associated with 
glial responses (34), being more strongly associated with MAPT 
mutation carriership than with GRN and C9orf72. In GRN carriers, 
the expected decrease in GRN concentrations was observed (10) in 
both presymptomatic and symptomatic GRN carriers. Further, we 
found increased concentrations of RNF13 in both presymptomatic 
and symptomatic GRN carriers, which might reflect an underlying 
alteration in the ubiquitin system (49), not as well captured in 
MAPT and C9orf72 carriers. We found several proteins that were 
changed in C9orf72 expansion carriers, including PGK1, which not 
only was elevated in presymptomatic carriers in comparison with 
noncarriers but also showed a stepwise increase across the disease 
continuum. In addition, CALB2 as well as HK1 were elevated in pre-
symptomatic C9orf72 carriers, and, like PGK1, their relative abun-
dances appeared to increase with disease progression. Both HK1 
and PGK1 are key enzymes of the glycolysis pathway, suggesting 
that a dysregulation of glucose metabolism might be an early feature 
of C9orf72-related FTD (50). HK1 and CALB2 were also selected as 
two of the top proteins in analyses comparing mutation carriers ir-
respective of underlying symptomatology, indicating their stronger 
association with a C9orf72 mutation.

This study has limitations. The identification of a lower number 
of proteins that were changed in MAPT mutation carriers in com-
parison with GRN and C9orf72 mutation carriers may be due to a 
lower number of participants in this group. C9orf72 seems to be the 
most common genetic cause of FTD worldwide, followed by GRN 

and then MAPT (1), and this trend is reflected in the recruitment of 
the GENFI study. Because of the structure of participant recruit-
ment in the GENFI cohort, some participants from the same family 
were included in the study. Family members may share genetic and 
environmental factors to a greater degree than the general popula-
tion, which may bias the results. However, we conducted sensitivity 
analyses that included only one member from each family, with 
comparable results.

Although genetic FTD offers the unique advantage of linking 
proteomic changes to pathological alterations antemortem, specifi-
cally distinguishing between tau and TDP-43 pathology, it cannot 
be excluded that observed proteomic changes are specific to the un-
derlying genetic mutation and not necessarily transferable to the 
resulting pathology in sporadic FTD. Further, although both the 
EMIF and Higginbotham et al. studies used similar statistical and 
mass spectrometric methods, it is likely that some of the differences 
seen between studies are due to varying power to detect proteomic 
alterations.

Last, the age difference between symptomatic carriers and non-
carriers may have resulted in age influencing the interpretation of 
results. However, including age as a covariate in all relevant analyses 
is likely to mostly mitigate this potential issue.

To conclude, this study explored the CSF proteome in genetic 
FTD and found distinct changes occurring already in presymptom-
atic mutation carriers indicating early lysosomal dysfunction and 
alterations in proteins involved in glucose metabolism, with more 
widespread proteomic differences during the symptomatic stage of 
the disease. We found that proteomic profiles largely overlapped be-
tween the different causes of FTD as well as with AD, especially with 
respect to synaptic loss, glial responses, and neurodegenerative pro-
cesses. Furthermore, we found that certain lysosomal proteins are 
strongly associated with MAPT mutation carriers, hinting at their 
potential value in distinguishing underlying FTD pathologies. To-
gether, our results can inform the development of targeted assays 
that could be of value in clinical scenarios as well as in research aim-
ing to better understand these diseases.

MATERIALS AND METHODS
Study design
The objective of this study was to explore the CSF proteomic signa-
tures of the three most common genetic pathogenic mutations in 
FTD. To this end, 238 CSF samples from an ongoing case-control 
study cohort of genetic FTD, the GENFI cohort, were used. Partici-
pants of the GENFI cohort were recruited from 14 GENFI centers, 
distributed across Europe and Canada, since 2012. One CSF sample 
per participant, generally obtained upon the first (baseline) visit, 
was included in the present cross-sectional study. The samples were 
randomized for measurement, and the researchers were blinded for 
genetic status and genetic mutations at the time of the experiment. 
No prior calculations were performed to determine cohort size; all 
available samples were included in the study. The presence of batch 
effects and sample outliers were investigated using hierarchical clus-
tering and principal components analysis before and after normal-
ization. The proteomic experiments were conducted in one replicate. 
No participants were excluded. The London Queen Square Ethics 
committee as well as local ethics committees at each site approved 
the study. The study complied with the Declaration of Helsinki. 
All participants provided written informed consent at enrollment 
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including consent to publication. This study adhered to the Strength-
ening the Reporting of Observational Studies in Epidemiology re-
porting guidelines for observational studies.

Participants and sample collection
Participants were recruited from the GENFI study, which includes 
individuals with a diagnosis of FTD due to a pathogenic mutation in 
MAPT, GRN, or C9orf72 (symptomatic mutation carriers), at-risk 
first-degree relatives (presymptomatic mutation carriers), and non-
carriers (mutation-negative first-degree relatives from the same 
families). Demographics of the cohort are described in Table 1.

Participants were assessed using a standardized history and 
examination and were classified as symptomatic if they met con-
sensus diagnostic criteria (51,  52). The CDR Dementia Staging 
Instrument with the NACC FTLD component was used to assess 
disease severity, and the CDR plus NACC FTLD SOB was used for 
quantitative analyses here. Participants underwent volumetric 
T1-weighted magnetic resonance imaging scans. More details on clinical 
evaluation and imaging can be found in Supplementary Methods.

CSF collection and sample preparation
CSF was collected in polypropylene tubes through LP and was cen-
trifuged to remove insoluble material and cells. Supernatants were 
aliquoted and stored at −80°C within 2 hours after collection. 
CSF samples (25 μl) were reduced by the addition of tris(2)-
carboxyethylphosphine (TCEP) in sodium deoxycholate (DOC) 
and triethylammonium bicarbonate (TEAB) to a final concentra-
tion of 5 mM TCEP (1% DOC and 100 mM TEAB). After incuba-
tion at 55°C for 1 hour, the samples were equilibrated to room 
temperature (RT). Carbamidomethylation was performed by add-
ing iodoacetamide to a concentration of 10 mM and subsequent-
ly incubating the reaction mixture in the dark for 30 min at 
RT. Trypsin (100 μg per vial; Promega) was dissolved in resuspen-
sion buffer (Promega), and 1.5 μg was added for overnight diges-
tion at 37°C. The next day, TMTpro reagents (TMT 18plex, Thermo 
Fisher Scientific, 5 mg) were dissolved in 200 μl of acetonitrile 
(ACN) having been equilibrated to RT. The samples were random-
ized across TMT sets, and TMT labeling was performed by adding 
10 μl of TMT reagent to each sample. Per set, a global internal stan-
dard (pool of all cohort samples) was included as the last TMT 
channel (135N) for reference and normalization. The reaction 
mixture was incubated for 1 hour under constant agitation, and, 
afterward, the labeling process was quenched by the addition of 
hydroxylamine to a final concentration of 0.2% (v/v). After an 
incubation period of 30 min, the samples were combined into 18-plex 
sets and subsequently acidified with 0.5 M hydrochloric acid to pre-
cipitate DOC as well as diluted with 0.1% trifluoroacetic acid (TFA). 
To remove DOC, TMT sets were centrifuged at 4000g for 15 min at 
4°C, and the resulting supernatant was subjected to desalting by 
solid-phase extraction. Desalting was performed on reversed-phase 
C18 cartridges (Sep-Pak C18 light) with a vacuum manifold. The 
columns were first washed twice with 1000 μl of 0.1% TFA in 80% ACN 
and then equilibrated with two washes of 1000 μl 0.1% TFA. After 
sample loading, the column was again washed twice with 1000 μl 
of 0.1% TFA, and, lastly, the peptides were eluted with 0.1% TFA 
and 80% ACN. The eluate was split into three aliquots of equal 
volume, dried by vacuum centrifugation, and stored at −20°C.  
Plasma NfL and other CSF marker measurements are detailed in 
Supplementary Methods.

Offline high-pH reversed-phase HPLC sample fractionation
Offline high-pH high-performance liquid chromatography (HPLC) 
fractionation was performed on an UltiMate 3000 Nano LC system. 
Each TMT set aliquot was dissolved in 22 μl of 2.5 mM NH4OH, of 
which 20 μl was injected to be separated on an XBridge BEH C18 
column (pore size, 130 Å; inner diameter, 4.6 mm). Peptide elution 
was accomplished using the following gradient: Buffer B was in-
creased from 1 to 45% over a 65-min period (flow rate of 100 μl/
min), whereas buffer C was maintained at 10% (buffer A, H2O; buf-
fer B, 84% ACN; buffer C, 25 mM NH4OH). The resulting fractions 
were collected circling over two rows in a 96-well microtiter plate at 
1-min intervals, yielding 24 concatenated fractions. Subsequent col-
umn cleaning was performed at 90% B and 10% C for 10 min fol-
lowed by an equilibration at 1% B and 10% C for 10  min. All 
fractions were subjected to vacuum centrifugation and stored dry at 
−20°C until subsequent liquid chromatography–mass spectrometry 
(LC-MS) analysis.

LC-MS
Fractions were dissolved in 50 μl of 0.05% TFA and 0.1% bovine 
serum albumin (loading buffer) and loaded on a nano-LC (Ultimate 
RSLC Nano, Thermo Fisher Scientific) equipped with a C18 trap 
column (PepMap Acclaim 300 μm by 5 mm, Thermo Fisher Scien-
tific) and C18 separation column (PepMap Acclaim 75 μm by 500 mm, 
Thermo Fisher Scientific), connected to an Orbitrap Fusion Lumos 
Tribrid mass spectrometer (Thermo Fisher Scientific), fitted with 
an Easy Spray Source and a high-field asymmetric waveform ion 
mobility spectrometry unit for spatial ion separation. Peptides 
were separated according to the following gradient: 5 min, 4% B; 
6 min, 10% B; 74 min, 40% B; 75 min, 100% B (buffer A: 0.1% FA; 
buffer B: 84% ACN, 0.1% FA). In the positive ion mode, alternating 
tandem mass spectrometry (MS/MS) cycles (cycle time  =  1.5 s) 
were performed at compensation voltages (CVs) of CV = −70 V, 
CV  =  −50 V. A full Orbitrap MS scan was recorded with the 
parameters specified as follows: R = 120 k, AGC target = 100%, max 
injection time = 50 ms. The full MS scan was then followed by 
data-dependent Orbitrap MS/MS scans set to the following param-
eters: R = 50 k, AGC target = 200%, max. injection time = 120 ms, 
isolation window = 0.7 m/z; activation type, higher-energy colli-
sional dissociation.

Statistical analysis
All statistical analyses were performed with R version 4.1.2. For basic 
demographic variables, omnibus Kruskal-Wallis tests were performed 
for continuous variables, whereas Fisher’s exact tests were used for 
categorical variables. Unless otherwise specified, Spearman correla-
tions were used to test associations between continuous variables. To 
assess differentially abundant proteins across the diagnostic groups, 
linear regression models were built with the log2-transformed value of 
the measured protein abundance as dependent variable, testing the 
effect of the diagnostic group and adjusting for both age and sex as 
covariates. The resulting P values were adjusted with the Benjamini-
Hochberg procedure to account for multiple testing. Statistical sig-
nificance (α) was set at a two-sided P < 0.05. To ensure a minimum 
number of observations per group, proteins with a high fraction of 
missing values (>75% of participants) were excluded from the regres-
sion analysis. In addition, groupwise outlier removal of protein mea-
surements (±1.5 × IQR) was performed before regression analysis 
because the presence of outliers can severely affect the resulting test 
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statistics, potentially increasing the rate of false negatives in the initial 
biomarker discovery phase. For all subsequent statistical analyses as 
well as box plots shown here, outliers were not removed. Linear mod-
els (also adjusted for age and sex), including only one member from 
each family, were performed in comparisons when more than five 
participants were available in both groups. To identify mutation-
specific signatures, linear models were fitted including protein abun-
dance as a dependent variable while evaluating the effect of each 
mutation group including affectation (absence/presence of symp-
toms) as well as age and sex as covariates. To identify subsets of 
co-correlated proteins relating to pathophysiological features of 
genetic FTD, we performed network analysis (WGCNA) followed by 
GO annotation of the output modules. The prognostic properties 
of protein networks were evaluated using linear mixed effects models. 
The specifics of each of these methods are described in Supple-
mentary Methods.

Supplementary Materials
The PDF file includes:
Methods
Figs. S1 to S25
References (53–56)

Other Supplementary Material for this manuscript includes the following:
Tables S1 to S10
MDAR Reproducibility Checklist
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