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ABSTRACT
Background Blood neurofilament light chain (NfL) is 
increasingly considered as a key trial biomarker in genetic 
frontotemporal dementia (gFTD). We aimed to facilitate 
the use of NfL in gFTD multicentre trials by testing its 
(1) reliability across labs; (2) reliability to stratify gFTD 
disease stages; (3) comparability between blood matrices 
and (4) stability across recruiting sites.
Methods Comparative analysis of blood NfL 
levels in a large gFTD cohort (GENFI) for (1)–(4), 
with n=344 samples (n=148 presymptomatic, 
n=11 converter, n=46 symptomatic subjects, with 
mutations in C9orf72, GRN or MAPT; and n=139 
within- family controls), each measured in three 
different international labs by Simoa HD- 1 analyzer.
Results NfL revealed an excellent consistency 
(intraclass correlation coefficient (ICC) 0.964) and high 
reliability across the three labs (maximal bias (pg/mL) in 
Bland- Altman analysis: 1.12±1.20). High concordance 
of NfL across laboratories was moreover reflected by 
high areas under the curve for discriminating conversion 
stage against the (non- converting) presymptomatic stage 
across all three labs. Serum and plasma NfL were largely 
comparable (ICC 0.967). The robustness of NfL across 
13 recruiting sites was demonstrated by a linear mixed 
effect model.
Conclusions Our results underline the suitability of 
blood NfL in gFTD multicentre trials, including cross- 
lab reliable stratification of the highly trial- relevant 
conversion stage, matrix comparability and cross- site 
robustness.

INTRODUCTION
Genetic frontotemporal dementias (gFTDs) repre-
sent a group of progressive neurodegenerative 
diseases characterised by a progressive decline of 

executive, behavioural and language functions, 
frequently resulting from mutations in the genes 
chromosome open reading frame 72 (C9orf72), 
progranulin (GRN) or microtubule- associated 
protein tau (MAPT).1 Neurofilament light chain 
(NfL)—an intermediate filament that constitutes 
part of the neuronal cytoskeleton—is released 
after neuronal damage into the interstitial fluid, 
cerebrospinal fluid and blood. Blood- based NfL 
has an increasing impact as a trial biomarker in 
gFTD for multiple contexts of use, for example, 
patient stratification,2–5 trial inclusion,6 toxicity 
monitoring and treatment- response capture,7 and 
has now been approved by the U.S. Food and Drug 
Administration as a surrogate endpoint contrib-
uting to approval of novel drugs (tofersen).8 
However, its wider use in multicentre trials—as 
well as in real- world clinical settings—has been 
questioned due to potential cross- laboratory 
heterogeneity in analytical approaches and blood 
sample matrices that might lead to different, non- 
comparable concentrations of blood NfL.9 10

Leveraging a large gFTD cohort, we here 
aimed to facilitate the use of blood NfL in gFTD 
multicentre trials and real- world clinical settings 
by testing: (1) its reliability across laboratories, 
measured at different time points, by different 
end- user devices and kits; (2) cut- off values maxi-
mising stratification accuracy of the trial relevant 
gFTD disease stages (conversion stage, symptom-
atic stage), with cut- off values validated across 
labs; (3) comparability between blood matrices 
and (4) robustness across recruiting sites.

METHODS
Cohort and NFL measurements
Subjects were patients with FTD caused by mutations 
in the genes C9orf72, GRN or MAPT (symptomatic 
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Figure 1 Cross- lab reliability, cross- lab disease- stage cut- offs and likelihood ratios (LR) and blood matrix comparability in genetic FTD. (A) Reliability 
of blood NfL measurements in genetic FTD (gFTD) across three labs (lab 1 and 2 serum, lab 3 plasma)—linear regressions and Bland- Altman analyses of 
log- transformed NfL values. For detailed statistics, see online supplemental table 2. (B) Comparative across- lab analysis of ROC curves and AUC values 
for the condition ‘presymptomatic versus symptomatic carriers’. Detailed values of AUC±SE and 95% CI are given in the Results section. (C) Reliability of 
AUC values across three labs—Bland- Altman analyses for all stage comparisons. For detailed statistics, see online supplemental table 2. (D) Prediction of 
individual risk factors at different cut- offs for the condition ‘presymptomatic versus symptomatic carriers’ (age- corrected z- values, first lab) by positive (LR+) 
and negative (LR−). AUC, area under the curve; FTD, frontotemporal dementia; NfL, neurofilament light chain; ROC receiver operating characteristic
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mutation carriers), and their respective first- degree relatives 
(ie, either presymptomatic mutation carriers or noncarriers 
serving as within- family controls), recruited by the international 
Genetic FTD Initiative (GENFI; www.genfi.org.uk)11 at 13 
sites. The comparative analysis included n=344 blood samples 
(n=148 from presymptomatic carriers; n=11 from carriers that 
converted during the observation period; n=46 from symptom-
atic carriers; n=139 from within- family- controls; for character-
istics of these subcohorts, see online supplemental table 1 that 
were independently measured for NfL levels by Single molecule 
array (Simoa; HD- 1 analyzer, Quanterix, Billerica, Massachu-
setts, USA) in three different laboratories (lab 1: Basel, Switzer-
land5; lab 2: Rotterdam, the Netherlands4; lab 3: London, UK2), 
using different NfL kits (Basel and Rotterdam: NF- Light Advan-
tage Kit 103186 (V.1); London: Neurology 4- Plex A Kit 102153), 
according to the manufacturer’s instructions. The blood matrices 
for NfL analysis were serum (Basel and Rotterdam) and plasma 
(London). Further methodological details of NfL measurements, 
details of the GENFI protocol, participant demographics, clinical 
classification of the disease stages (ie, presymptomatic carriers, 
converters, symptomatic carriers) as well as NfL quantification 
were described elsewhere.2 4 5 11

Statistical analyses
SPSS for Windows V.29.0 (IBM), Sigmaplot for Windows V.15 
(Inpixion, Germany) and RStudio 2022.07.2 were used for 
statistical analyses. NfL values were not normally distributed 
and therefore log- transformed. For age- corrected z- scores—
taking into consideration the age- related NfL increase observed 
in controls—log- transformed NfL values were normalised rela-
tive to their distribution in controls.5 The consistency of NfL 
measurements across the three different labs was quantified by 
intraclass correlation coefficients (ICC; two- way mixed effect 
model, single measures, absolute agreement12). Bland- Altman 
analyses13 were used to quantify between- lab bias, defined as the 
mean of the differences; limits of agreement, that is, the mean 
of the bias±1.96 times the SD of the differences; and 95% CIs 
for the bias with lower and upper limits of agreement. The diag-
nostic performance of NfL was assessed by receiver operating 
characteristic (ROC) analysis14 and calculating areas under the 
curve (AUCs), as well as optimal operating points, that is, cut- 
off values (assuming a cost ratio of 1 and a pretest probability 
of 0.5), maximising stratification accuracy for different gFTD 
disease stages. The predictive value for an NfL- based disease 
stage stratification was addressed by calculating positive and 
negative likelihood ratios (LR+ and LR−).15 Linear mixed effect 
models were used to characterise the stability of log- transformed 
NfL levels across recruiting sites (with categorial factors of 

disease stage and genetic status, and metric covariate of age as 
fixed effects).

RESULTS
NfL levels showed an excellent consistency across the three 
labs (ICC 0.964, 95% CI lower to upper limit 0.946 to 
0.974), as demonstrated by a two- way mixed effect model. 
Reliability of NfL levels was high and bias was low across all 
three labs, as shown by linear regressions and Bland- Altman 
analyses with a maximal bias±SD of 1.12 pg/mL±1.20 (for 
summary, see figure 1A). The performance of blood NfL to 
serve as a disease stage stratification biomarker in gFTD 
was investigated by ROC curve analyses and calculation of 
optimal cut- off values maximising stratification accuracy for 
different gFTD disease stages. Blood NfL allowed discrimi-
nation of conditions (1) symptomatic carriers versus controls 
(AUC: 0.91; cut- off, given as z- value: 2.83), (2) converters 
versus controls (AUC: 0.89; cut- off z: 3.05), (3) converters 
versus presymptomatic carriers (AUC: 0.86; cut- off z: 3.19) 
and (4) symptomatic versus presymptomatic carriers (AUC: 
0.88; cut- off z 3.20). NfL did not allow a discrimination 
of (5) presymptomatic carriers versus controls (AUC: 0.57) 
or (6) symptomatic carriers versus converters (AUC: 0.59), 
with AUCs close to the random classifier level (for detailed 
results, see table 1). Concordance of AUCs across the three 
labs for all comparisons was high (maximum difference±SE 
0.02±0.01), as exemplified in figure 1B for the discrimi-
nation of symptomatic vs presymptomatic carriers (lab 1 
AUC±SE 0.94±0.02, 95% CI 0.90 to 0.98; lab 2 AUC±SE 
0.92±0.02, 95% CI 0.86 to 0.96; lab 3 AUC±SE 0.94±0.02, 
95% CI 0.91 to 0.98)). The high reliability of AUC across labs 
for all disease stage comparisons was further corroborated 
by Bland- Altman analysis (see figure 1C), with a maximal 
bias of 0.01±0.01 (AUC±SD). For a genotype- specific anal-
ysis (C9orf72, MAPT, GRN) of NfL cross- lab reliability and 
disease- stage AUC, see online supplemental figures 1,2 and 
online supplemental tables 3,4.

The disease stage- specific stratification value of NfL levels—
beyond dichotomising cut- offs—was demonstrated by LR (see 
figure 1D). For exemplary illustration of the individual risk 
prediction of being presymptomatic versus symptomatic carrier 
at different NfL levels by LR+ and LR− see figure 1C (NfL 
values from lab 1). An NfL z- value of 3 corresponded to an LR+ 
of 83 and an LR− of 0.5.

NfL values in serum and plasma (n=344 samples of each 
matrix) were largely comparable (ICC 0.967, 95% CI lower to 
upper 0.894 to 0.977), as calculated by a two- way mixed effect 
model. The median ratio serum/plasma was 0.95.

Table 1 Receiver operating characteristic (ROC) curve analysis with areas under the curve (AUC) and optimal cut- offs for separating different gFTD 
stages and conditions

gFTD conditions AUC SE

Optimal cut- off

z- value Specificity (%) Sensitivity (%)

Symptomatic carriers versus controls 0.91 0.02 2.83 100 49.5

Converters versus controls 0.89 0.07 3.05 100 42.9

Converters versus presymptomatic carriers 0.86 0.08 3.19 100 42.9

Symptomatic versus presymptomatic carriers 0.88 0.02 3.20 100 46.2

Presymptomatic carriers versus controls 0.57 0.03

Symptomatic carriers versus converters 0.59 0.10

Data from lab 1; optimal cut- off values are given as z- values (corrected for age). For the data from lab 2 and 3, see figure 1B and C.
gFTD, genetic frontotemporal dementia.
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The high robustness of NfL across 13 recruiting sites was 
shown by a linear mixed effect model, as the categorial variable 
‘recruiting site’ did not explain any variance (estimate 0.001, SE 
0.001, Wald- Z 1.403, significance 0.161).

DISCUSSION
Blood NfL has an increasing impact as a trial biomarker in 
gFTD for multiple contexts of use5 7 and is now being increas-
ingly acknowledged by the FDA as a surrogate endpoints in 
drug approval processes.8 However, its wider use in multicentre 
trials and real- world clinical settings is limited by lack of larger 
data demonstrating cross- lab reliability, cross- lab validated cut- 
off values and cross- lab validated comparability between blood 
matrices in gFTD. Leveraging a large genetic FTD, our findings 
show that blood NfL is a biomarker in gFTD with high reli-
ability across labs—even if assessed at different time points, and 
by partly different kits (NF- Light Advantage Kit vs Neurology 
4- Plex A Kit). This finding confirms and extends earlier findings 
showing a good cross- lab reliability of blood NfL, which so far, 
however, has been limited to smaller sample sets and non- gFTD 
cohorts.16 Given, however, that all three labs in our study still 
used the same type of platform (Simoa HD- 1), future studies 
need to investigate a potential decrease in cross- lab reliability if 
different measurement platforms are being used for blood NfL 
(eg, Ella,17 Uman,18 Atellica19). A pilot study on this showed 
promising results.20

Reliable cut- off values of blood NfL for accurately stratifying 
different gFTD disease stages are key for its use as a molecular 
stratification marker of gFTD subjects into treatment trials.3 5 7 
In particular, reliable blood- based stratification of subjects close 
to conversion to the symptomatic phase of the disease will be 
of extremely high value to identify and recruit subjects into 
upcoming mechanistic treatment trials tailored to prevent neuro-
degeneration by early intervention.5 21 Extending earlier findings 
on blood NfL cut- offs in gFTD,3 our findings now indicate that 
these cut- off values can be provided by blood NfL for gFTD 
even with a high reliability across labs. In addition, they also 
show that NfL levels in converting carriers are already more 
similar to symptomatic carriers than (non- converting) presymp-
tomatic carriers. Nevertheless, in the absence of a certified refer-
ence material, value assigned by a certified reference method, 
the reported cut- offs remain preliminary and prospective 
laboratory- specific validation remains required.

Multicentre use of blood NfL—whether in trials or real- world 
clinical settings—is inherently characterised by cross- centre vari-
ability in preanalytical sample handling. Our data from a large 
set of different sites (n=13) suggest that this variability might not 
exert a substantial effect on multicentre blood NfL values—even 
despite the fact that no strictly enforced cross- centre harmonised 
standard operating procedure or centralised biosampling moni-
toring had been employed across centres. These data corrobo-
rate blood NfL as a very stable biomarker that is resistant to 
most types of clinically relevant variation in preanalytical sample 
handling.22 Future studies with larger sample batches per centre 
and testing more extreme variabilities in preanalytical sample 
handling are warranted to further investigate and specify the 
limits of this cross- centre comparability.

Real- world clinical multicentre use of blood NfL moreover 
often faces the challenge that samples come from different blood 
matrices (eg, serum vs plasma).9 While our findings confirm 
differences in the absolute blood NfL concentrations between 
serum and plasma, they at the same time show a high consis-
tency between both blood matrices, allowing comparability of 

both matrices. The calculated median ratio serum/plasma might 
be a first coarse help when comparing results derived from these 
different matrices. However, its use might be limited to Simoa- 
based blood NfL measurements, and further larger in- depth 
studies in independent cohorts are required to confirm this 
factor.

Our study has several limitations. First, although lever-
aging the largest gFTD cohort existing so far, the sample size 
is partly limited by the requirement to measure each sample in 
three labs, leading to limited sample sizes in particular for some 
gFTD subcohorts (eg, converters). Second, the construct and 
wording of ‘cut- offs’ suggest a separating dichotomy where in 
fact a biological continuum of NfL levels and disease progression 
exists.

Despite these limitations, our results underline the suitability 
of blood NfL as a fit- for- purpose biomarker in gFTD multicentre 
trials.
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Supplementary Figure 1: Cross-lab reliability for each genotype (C9orf72, GRN, and MAPT) 

of blood NfL measurements in genetic FTD (gFTD) across three labs (lab 1 and 2 serum, lab 

3 plasma) - linear regressions and Bland-Altman analyses of log-transformed NfL values. For 

detailed statistics see Supplementary Table 3.  

 

 

Supplementary Figure 2: Cross-lab disease stage AUC for each genotype (C9orf72, GRN, 

and MAPT) of blood NfL measurements in genetic FTD (gFTD) across three labs - Bland-

Altman analyses of disease stage AUC. For detailed statistics see Supplementary Table 4. 

An analysis for the converters was performed for C9orf72, but not for GRN and MAPT due to 

the sample size (see cohort characteristics in Supplementary Table 1). 
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Supplementary Tables 

Group Subjects Subjects with 
longitudinal 
samples 

Male sex Age (years) Disease onset 
(years) 

Presymptomatic 66 57 42 41 (34.00 – 49.38) n.a. 

- C9orf72 22 17 14 42 (35.04 – 48.88) n.a. 

- GRN 29 28 16 43 (34.97 – 52.62) n.a. 

- MAPT 15 12 12 36 (32.17 – 46.44) n.a. 

Converter 4 4 1 65 (59.72 – 67.53) n.a. 

- C9orf72 3 3 1 63 (56.89 – 65.00) n.a. 

- GRN 1 1 0 68 n.a. 

Symptomatic 21 18 8 63 (59.29 – 66.23) 56 (53.00 – 60.00) 

- C9orf72 7 6 1 66 (64.17 – 71.66) 57 (51.50 – 61.50) 

- GRN 8 7 4 61 (59.67 – 66.03) 58 (54.75 – 58.50) 

- MAPT 6 5 3 61 (58.30 – 64.51) 54 (52.25 – 55.50) 

Controls (non-
carriers) 

60 53 34 45 (37.52 – 55.74)  

 

Supplementary Table 1. Cohort characteristics at baseline. Data are reported as median and 

interquartile range. N.a.: not applicable. 

 

A,  

  Lab 1 vs. lab 2 Lab 1 vs. lab 3 Lab 2 vs. lab 3 

 Bias 1.08 1.12 1.03 

 Std Dev 1.15 1.20 1.22 

 Limits of Agreement 0.82, 1.43 0.78, 1.59 0.69, 1.53 

 Bias CI 95% CI 1.07 to 1.10 1.10 to 1.14 1.01 to 1.05 

 Lower Limit of Agreement CI 95% CI 0.80 to 0.84 0.76 to 0.81 0.67 to 0.72 

 Upper Limit of Agreement CI 95% CI 1.39 to 1.47 1.54 to 1.64 1.48 to 1.59 

     

B. 

 Bias -0.1 0.00 0.01 

 Std Dev 0.01 0.01 0.01 

 Limits of Agreement -0.21, to 0.01 -0.07, to 0.01 -0.01, to 0.03 

 Bias CI 95% CI -0.01 to 0.00 -0.00 to 0.01 -0.00 to 0.02 

 Lower Limit of Agreement CI 95% CI -0.04 to -0.01 -0.02 to 0.00 -0.03 to 0.01 

 Upper Limit of Agreement CI 95% CI -0.01 to 0.03 0.00 to 0.02 0.01 to 0.05 

 

Supplementary Table 2. Numerical results of the Bland-Altman analysis comparing blood NfL 

measurements in genetic FTD across three labs (lab 1 and 2 serum, lab 3 plasma) (A: see 

Figure 1A; B: see Figure 1C). Data are given as pg/ml. 
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C9orf72  

  Lab 1 vs. lab 2 Lab 1 vs. lab 3 Lab 2 vs. lab 3 

 Bias 1.58 1.12 1.07 

 Std Dev 1.15 1.20 1.23 

 Limits of Agreement 0.11, 1.38 0.78, 1.58 0.72, 1.58 

 Bias CI 95% CI 1.02 to 1.07 1.07 to 1.15 1.02 to 1.12 

 Lower Limit of Agreement CI 95% CI 0.76 to 0.83 0.74 to 0.83 0.68 to 0.78 

 Upper Limit of Agreement CI 95% CI 1.32 to 1.45 1.51 to 1.70 1.48 to 1.70 

     

GRN 

 Bias 1.10 1.12 1.00 

 Std Dev 1.15 1.20 1.23 

 Limits of Agreement 0.83, 1.45 0.76, 1.62 0.68, 1.51 

 Bias CI 95% CI 1.07 to 1.12 1.07, to 1.14 0.98 to 1.05 

 Lower Limit of Agreement CI 95% CI 0.81 to 0.87 0.72 to 0.79 0.63 to 0.71 

 Upper Limit of Agreement CI 95% CI 1.38 to 1.51 1.55 to 1.70 1.41 to 1.58 

     

MAPT 

 Bias 1.10 1.12 1.02 

 Std Dev 1.15 1.17 1.23 

 Limits of Agreement 0.81, 1.45 0.83, 1.51 0.69, 1.55 

 Bias CI 95% CI 1.05 to 1.12 1.07 to 1.15 0.98 to 1.07 

 Lower Limit of Agreement CI 95% CI 0.78 to 0.87 0.78 to 0.87 0.63 to 0.74 

 Upper Limit of Agreement CI 95% CI 1.38 to 1.55 1.41 to 1.62 1.41 to 1.66 

 

Supplementary Table 3. Numerical values of Bland-Altman analysis for cross-lab reliability 

for each genotype (see supplementary figure 1). Data are given as pg/ml. 

 

C9orf72  

  Lab 1 vs. lab 2 Lab 1 vs. lab 3 Lab 2 vs. lab 3 

 Bias -0.07 0.03 0.01 

 Std Dev 0.01 0.02 0.02 

 Limits of Agreement -0.02, 0.01 -0.03, 0.04 -0.03, 0.05 

 Bias CI 95% CI -0.02 to 0.00 -0.02 to 0.02 -0.01 to 0.03 

 Lower Limit of Agreement CI 95% CI -0.04 to -0.01 -0.06 to 0.00 -0.07 to 0.01 

 Upper Limit of Agreement CI 95% CI -0.01 to 0.03 0.00 to 0.07 0.01 to 0.09 

     

GRN 

 Bias 0.01 0.01 0.00 

 Std Dev 0.03 0.03 0.03 

 Limits of Agreement -0.04, 0.06 -0.05, 0.07 -0.06, 0.06 

 Bias CI 95% CI -0.18 to 0.20 -0.21, to 0.23 -0.22 to 0.23 

 Lower Limit of Agreement CI 95% CI -0.36 to 0.28 -0.43 to 0.33 -0.44 to 0.33 

 Upper Limit of Agreement CI 95% CI -0.26 to 0.38 -0.31 to 0.45 -0.33 to 0.45 

     

MAPT 

 Bias 0.01 0.01 0.01 

 Std Dev 0.02 0.06 0.03 

 Limits of Agreement -0.03, 0.05 0.00, 0.02 -0.04, 0.06 

 Bias CI 95% CI -0.15 to 0.16 -0.03 to 0.06 -0.18 to 0.20 

 Lower Limit of Agreement CI 95% CI -0.30 to 0.23 -0.07 to 0.08 -0.36 to 0.28 

 Upper Limit of Agreement CI 95% CI -0.22 to 0.31 -0.05 to 0.10 -0.26 to 0.38 

 

Supplementary Table 4. Numerical values of Bland-Altman analysis for cross-lab disease-

stage AUC for each genotype (see supplementary figure 2). Data are given as pg/ml. 
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